Mean Value Theorem

1. Consider the following graph of $f(x)=x \sin (x)$ on the domain $[-3,3]$.

(a) How many values of c in $(-3,3)$ appear to satisfy the Mean Value Theorem equation $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ where $a=-3$ and $b=3$.
(b) How many values of c in $(-3,3)$ appear to satisfy the Mean Value Theorem equation $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ where $a=-4$ and $b=2$.
(c) How many values of c in $(-3,3)$ appear to satisfy the Mean Value Theorem equation $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ where $a=-2$ and $b=3$.
2. Suppose that f is continuous and differentiable on the interval [3, 8]. Also suppose that $f(3)=2$ and $f^{\prime}(x) \leq 2$ for all x in the interval [3, 8]. What is the largest possible value for $f(8)$? Justify your response.
3. In an ideal situation, the energy required to move an object with a uniformly applied force F across a distance D is $E=F \cdot D$. From rest, we know that a total of 70 Joules (the unit for energy) were expended to move the box a total of 5 ft . How much force must have been exerted at least momentarily while the box was being pushed?
4. Suppose that g is continuous and differentiable on the interval [2, 7]. Also suppose that $f(2)=10$ and $f^{\prime}(x) \geq-2$ for all x in the interval $[2,7]$. What is the smallest possible value for $g(7)$? Justify your response.
